ADDITIONS AND CORRECTIONS

1999, Volume 103A

Richard D. Harcourt: Four-Electron Three-Center Bonding: One-Electron and Concerted Two-Electron Delocalizations into Bonding and Antibonding Molecular Orbitals

Page 4293. The entries for $T_{\rm II,III}$ and $A_{\rm I,III}$ in Table 2 should be +0.089 699 and 2.780 373 au, respectively. As in ref 1, $\rho =$ 0.495 318. Use of these corrected values affects only slightly the values for the μ and ΔE_4 which depend on them.

Valence bond structures 4 and 6 of ref 1 were obtained when

two electrons and one electron were respectively delocalized from the doubly occupied Y-atom AO of VB structure **1** of ref 1 into the Y-A bonding MO $\psi_{ya} = y + la$. For small μ , the resulting stabilization energies for structures **4** and **6** relative to structure **1**, ΔE_4 and ΔE_6 , were given by eqs 17 and 18 of ref 1.

The results of calculations¹ for the F:H–F component of the HF dimer (HF)₂, with both the inclusion and omission of the small matrix element $T_{I,III}$ in eq 17 of ref 1, gave $\Delta E_6 - \Delta E_4 < 0$, or $E_6 < E_4$; i.e., the delocalization of one of the Y-atom lone-pair electrons of structure 1 into the Y–A bonding MO is preferred energetically to the concerted two-electron delocalizations into this MO. Here we retain $T_{I,III}$ in eq 17 and derive the condition for E_6 to lie below E_4 for small μ and ν . Each μ and ν is greater than zero for Y–A bonding.

The ν of eq 18 of ref 1 approximates to $-T_{I,II}/A_{I,II}$. From eq 17 of ref 1, we obtain

$$\Delta E_4 = \Delta E_6 + 2\rho\nu\mu(T_{\text{I,III}} + \nu T_{\text{II,III}} + 0.5\rho\nu\mu A_{\text{I,III}}) \quad (1)$$

as the approximate expression for ΔE_4 . The corresponding approximate expression for μ is given by

$$\mu = \nu - \rho \mu (T_{\rm I,III} + 2\nu T_{\rm II,III} + \rho \nu \mu A_{\rm I,III}) / A_{\rm I,II}$$
(2)

From eq 1, we obtain

$$T_{\rm I,III} + \nu T_{\rm II,III} + 0.5 \rho \nu \mu A_{\rm I,III} > 0$$
 (3)

as the approximate requirement for E_6 to be less than E_4 . For the (HF)₂ calculations,¹ eq 3 is equal to +0.010 64 au, and $T_{I,III}$ is the only negative term. Its value (-0.009 54 au) is almost canceled by $0.5\rho\nu\mu A_{I,III}$ (+0.009 52 au). The $\nu T_{II,III}$ term is then primarily responsible for the energetic preference of a oneelectron delocalization over concerted two-electron delocalizations. It remains to be determined whether these types of results are also appropriate for other systems.

Note Added in Proof. For revised definitions for the A-atom valence in each of the valence bond structures 4 and 6 see: Harcourt, R. D. J. Mol. Struct. THEOCHEM 2003, 634, 265.

Note Added after ASAP Posting. This addition/correction was posted ASAP on 11/13/2003. A correction was made to the displayed valence bond structure **4**. The corrected version was posted on 11/21/2003.

References and Notes

(1) Harcourt, R. D. J. Phys. Chem A 1999, 103, 4293.

10.1021/jp0311431 Published on Web 11/13/2003